Спросить
Войти
Категория: Нанотехнологии

Обзор методов формирования локализованных слоёв графена

Автор: Лаптев Евгений Владимирович

ОБЗОР МЕТОДОВ ФОРМИРОВАНИЯ ЛОКАЛИЗОВАННЫХ СЛОЁВ ГРАФЕНА

Евгений Владимирович Лаптев

Сибирская государственная геодезическая академия, 630108, г. Новосибирск, ул.

Плахотного, 10, аспирант кафедры наносистем и оптотехники, тел. +7(383) 913 060 2827, email: Genius-1188@yandex.ru

Сергей Леонидович Шергин

Сибирская государственная геодезическая академия, 630108, г. Новосибирск, у Плахотного, 10, кандидат технических наук, старший преподаватель кафедры физики, тел. (383)361-08-36, e-mail: serkron@mail.ru

В статье рассмотрены существующие методы локализованного образования слоев графена и графеновых пленок, свойства данного материала, а также его возможное применение в тех или иных областях микро- и наноэлектроники.

Siberian State Academy of Geodesy (630108, Novosibirsk, Plahotnogo st., 10), postgraduate of Nanosystems and optical engineering department, phone +7(383) 913 060 2827, e-mail: Genius-1188@yandex.ru

Sergey L. Shergin

Siberian State Academy of Geodesy (630108, Novosibirsk, Plahotnogo st., 10), Candidate of Technical Sciences, Senior Lecturer of Physics department, (383) 361-08-36, e-mail: serkron@mail.ru

The review of modern local graphen layers formation methods is presented.

В данной статье рассмотрены свойства и методы получения материала, который может стать будущей основой микро- и наноэлектроники. Как известно, графен (англ. graphene) - слой атомов углерода толщиной в один атом, соединенных посредством sp2 связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделенную от объёмного кристалла. По оценкам, графен обладает большой механической жесткостью и хорошей теплопроводностью (1 ТПа и

-5 _1 _1

5^10 Вт м К , соответственно). Высокая подвижность носителей тока при комнатной температуре делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.

На рис. 1 показана кристаллическая структура графена: атомы углерода выстроены в решётку «пчелиные соты» [1].

Рис. І. Кристаллическая структура графена

Несмотря на то, что попытки изучения графена прослеживаются до 1859 года [2], его активное исследование началось не так давно, после нахождения довольно простого способа изготовления относительно больших и изолированных друг от друга образцов графена [3, 4].

Первоначальный метод микромеханического расслоения или его более известное название метод «клейкой ленты» [3,4], оказался весьма эффективным и простым и благодаря этому исследования графена стали очень быстро развиваться. Несмотря на столь удобный способ получения графена, на сегодняшний день, данный метод не позволяет получить однородные и равноразмерные слои графена. Поэтому метод микромеханического расслоения не может быть использован в качестве метода локализованного образования слоёв графена. В дальнейшем довольно будут подробно рассмотрены те методы, которые позволяют получить локализованные, однородные и равноразмерные слои графена. Однако для того чтобы понять для чего вообще нужны такие методы, необходимо проанализировать потенциальные области применения графена в виде локализованных слоёв.

В 2010 году два учёных Манчестерского университета (Великобритания), Новосёлов Константин Сергеевич и Гейм Андрей Константинович стали лауреатами Нобелевской премии 2010 года по физике, за открытие графена. Данная награда, служит признанием многообещающего будущего данного материала. Он может произвести революцию в индустрии электроники и позволит создавать легкие, крепче стали, материалы. И это одни из многих возможных применений данного материала. Гейм заявил, что он "видит параллели с ситуацией, которая сложилась около 100 лет назад, когда были открыты полимеры. Прошло некоторое время и полимеры вошли в нашу жизнь в виде пластмассы и стали играть важную роль в жизни людей" [5].

Постараемся осветить наиболее известные и полезные потенциальные области применения графена. И так потенциальные области применения

графена: замена углеродных волокон в композитных материалах, с целью создания более легковесных самолетов и спутников; замена кремния в транзисторах; датчики на основе графена могут обнаруживать опасные молекулы; использование графеновой пудры в электрических аккумуляторах, с целью увеличения их эффективности; оптоэлектроника; прозрачное токопроводящее покрытие для солнечных панелей и для мониторов; более крепкие ветряные двигатели; более устойчивые к механическому воздействию медицинские имплантаты; улучшение проводимости материалов; высокомощные высокочастотные электронные устройства; искуственные мембраны для разделения двух жидкостей в резервуаре; производство графеновых нанолент позволит создать баллистические транзисторы [5]. Для того чтобы стало возможным применение графена в вышеуказанных областях, необходимо разрабатывать всё более эффективные методы локализованного образования слоёв графена, а также использовать существующие в качестве отправной точки. Наиболее эффективные и общепринятые методы образования слоёв графена: химический метод, эпитаксиальный метод, метод термического разложения подложки из углеродосодержащего материала, например карбида кремния ^С). Рассмотрим более подробно каждый из методов.

Химический метод. Кусочки графена можно приготовить из графита, используя химические методы [6]. Для начала микрокристаллы графита подвергаются действию смеси серной и соляной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графена [7,8,9]. Несмотря на возможность получения данный методом нанометровых слоёв графена, он довольно сложен, трудоёмок и требует не малого количества химических веществ, поэтому автор статьи считает его не эффективным методом локализованного образования слоёв графена.

Эпитаксиальный метод. Сотрудники Национальной лаборатории им. Лоуренса в Беркли (США) продемонстрировали возможность создания пленок однослойного графена на различных диэлектрических подложках

методом химического осаждения из паровой фазы.

На рис. 2 показаны стадии получения графеновой плёнки [10].

Рис. 2. Стадии получения графеновой плёнки

Подложками служили монокристаллы кварца, сапфир, кварцевое стекло и диоксид кремния. Сначала на них методом электронно-лучевого испарения наносился слой катализатора (меди) толщиной 100-450 нм. Затем при температуре в 1 000 °С начинался процесс парофазного химического осаждения в присутствии смеси Н2 и СН4, продолжавшийся от 15 минут до семи часов. В процессе выращивания пленки или сразу после его окончания медь собирается в капли и удаляется, оставляя однослойный графен на диэлектрической подложке [10].

Метод термического разложения подложки из углеродосодержащего материала (на примере SiC). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена очень близок к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: С-стабилизированная или Si-стабилизированная поверхность - в первом случае качество плёнок выше.

Заключение. Несмотря на значительное количество методов получения графена, ни один из вышеперечисленных не позволяет произвести локализованное образование островков графена. Однако на данный момент в лабораториях Сибирской Государственной Геодезической Академии (г. Новосибирск) исследуются два метода локализованного образования островков графена, которые в дальнейшем могут применяться при формировании базовых элементов в новейших приборах и устройствах. Первый способ предполагает формирование островков графена методом инициированного лазерным излучением парофазного химического осаждения (ЛПФХО, англ. LCVD) из паров элементоорганических соединений на монокристаллических поверхностях. Второй способ основывается на формировании островков графена в результате термостимулированной лазерным локальным импульсным облучением диффузии атомов углерода изнутри монокристаллических плёнок (карбида кремния, насыщенного углеродом никеля) на их поверхность, с дальнейшим многостадийным процессом переноса графеновых чешуек на рабочую поверхность. Два данных метода при соблюдении всех норм и правил технологического процесса, позволяют произвести локализованное образование островков графена, что непосредственно является серьёзным достижением в области нанотехнологий.

Многие учёные всего мира исследуют, усовершенствуют и разрабатывают методы получения графена для тех или иных областей науки. В зависимости от потребности в изготовлении материалов с новыми свойствами, а также разработки новейших приборов и устройств на основе графена, учёные ставят перед собой задачи по разработке метода, позволяющего сформировать максимально приближенную к идеальной равномерную, однородную, локализованную структуру графена.

И хотя на сегодняшний день существует немало недоработок и проблем при изучении графена, факт остаётся фактом, графен является материалом настоящей и будущей наноэлектроники.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Новосёлов, К.С. Графен: метериалы Флатландии [Текст] / К.С. Новосёлов // Нобелевская леция. - Стокгольм, 2010.
2. Brodie B C Phil. Trans. R. Soc. Lond. 149 249 (1859)
3. Novoselov K S et al. Science 306 666 (2004)
4. Novoselov K S et al. Proc. Natl. Acad. Sci. USA 102 10451 (2005)
5. Графен изменит нашу жизнь: практическое применение графена в будущем (2010) [Electronic resource] / Статья - Англ. - Режим доступа: http://globalscience.ru/article/read/18798/
6. Solution Properties of Graphite and Graphene Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon, and Robert C. Haddon J. Am. Chem. Soc.; 2006; 128
7. Bunch J. S. et al. Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots Nano Lett. 5, 287 (2005)
8. Li X. et. al. Highly conducting graphene sheets and Langmuir-Blodgett films Nature Nanotechnology 3, 538 (2008)
9. Hernandez Y. et. al. High-yield production of graphene by liquid-phase exfoliation of graphiteNature Nanotech. 3, 563 (2008)
10. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces (2010) [Electronic resource] / American Chemical Society - Англ. - Режим доступа: http://pubs.acs.org/doi/abs/10.1021/nl9037714

© Е.В. Лаптев, С.Л. Шергин, 2012

ГРАФЕН ЛОКАЛИЗОВАННЕ ОБРАЗОВАНИЕ СЛОЁВ ГРАФЕНА НАНОТЕХНОЛОГИИ local graphen layers formation
Другие работы в данной теме:
Контакты
Обратная связь
support@uchimsya.com
Учимся
Общая информация
Разделы
Тесты